Chemistry - Student Works
Permanent link for this collection
Browse
Browsing Chemistry - Student Works by Author "Coyle, Amanda"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Primordial sulfur and the origin of life(2018) Coyle, Amanda; Hilts, RobertThe study of meteorites can give insight regarding the chemical composition that was present when the solar system was being created. The elements in meteorites have not undergone extensive changes since they were formed billions of years ago, so they are thought to resemble those on Earth before the formation of the hydrosphere. This can lead to information regarding the formation of the solar system, Earth, and consequently, life. Sulfur is of interest because it has essential roles in biochemistry and a prevailing theory regarding the origin of life is that it began in an iron-sulfur world. By determining the sulfur composition of meteorites and the isotopic ratios – ratio of atoms of the same element with different atomic masses – we hope to determine the processes behind for formation of the form of sulfur responsible for the creation of life. This first stage of the project was to perfect wet chemistry and analytical techniques to extract and quantify sulfur species from meteorites. The development of the techniques required reading research literature, testing, and altering the techniques while working with a meteorite simulant. Multiple extractions with different solvents were used to differentially separate the sulfur species based on their chemical and physical properties. The extractions were pure with high yields. These techniques will be used to extract sulfur from the meteorites in the MacEwan collection, which will then undergo isotopic analysis.Item Sulfur composition of MacEwan meteorites(2018) Coyle, Amanda; Hilts, RobertMeteorites contain a wide variety of sulfur species: sulfates, sulfides, organic sulfur, and elemental sulfur. Sulfur in meteorites is thought to be in a form that resembles the sulfur on Earth before the formation of the hydrosphere. Thus, through investigations of the composition of these meteorites, insight can be gained regarding the formation of the Earth, and consequently, the formation of life. The goal of this project was to perfect wet chemistry techniques to deferentially extract the sulfur species to determine the relative masses of the different species. Multiple extractions with different solvents were used to separate the species based on their chemical and physical properties. Although all the species contain sulfur, the properties of them vary immensely. The MacEwan meteorites collection contains a wide variety of meteorites, including carbonaceous chondrites and a lunar sample. The techniques developed during the beginning phase of the project were applied to extract from one of the rocks, and will be used in future projects to extract sulfur from all rocks in the collection.